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Motivation — Predictive simulation of engineering systems

* Data-driven representation of uncertainty
* Model parameters or structure

* Propagation of uncertainties

* Model Verification and Validation (V&V)

* Certification and uncertainty management
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Challenges for complex systems

 Multiple physics

 Multiple length/time scales

* Limited and noisy data
* sub-scale model calibration

* Large number of uncertain variables
* uncertainty propagation

* Expensive forward solves

* Verification
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From deterministic to stochastic PDEs

Probabilistic approach:

* Define an abstract probability space (2, A,P)

* Represent data using random variables ¥(w) : @ — R?

* model parameters/structure, initial conditions, boundary conditions, ...

Stochastic PDEs:
L(x,t,y(w);u)

0, (x,t)€Dx[0,T]

5.0 Bzt y(w); u)

0, (x,t)€dD x[0,T]

* Solution is also stochastic: u = u(x,t, y(w))



From stochastic to parametric solution

Finite dimensional uncertainty:

y(w) = (pn(w),...,ya(w)) €R?, d< oo

yi(w) : 2 — T'; CR independent with known distribution functions

Parametric solution:
d
w@, by, ya) : DX [0,T]x | [Ty — R
i=1

* A parametric problem in higher dimensions
* Challenge is when d is large

* Many ideas from high-dimensional function approximation apply



A wish list for complex systems

Random inputs Complex Random output
y ~ Py PDE System u(y)
An ideal approach: Key to success:
» Sampling-based (non-intrusive) * Exploit solution structures
* Legacy codes * Anisotropy
* Fewest possible simulations * Low-rank
* Fast convergence * Sparsity in some basis



Polynomial chaos approximation

Multi-dimensional spectral approximation of finite-variance u(y):

P
up(y) = Z cii(y) @ u(y) as p— o0
i=1

d
Tensor-product basis:  1;(y) = H Gi,(Yk), 1+ +ig <p
k=1

(p+ d)!
pld!

Ortho-normal basis: /¢Zk (yk)¢3k (yk)Pyk dyr = i — /%(yﬁ% (y)dpy = 04j

Number of basis: P =

Chaos coefficients: ci = /u(y)wl(y)dpy

Askey scheme:

¢ir, (yr) Hermite polynomials

Yr ~ uniform ¢i.(Yx) Legendre polynomials
Yk ~ Gaussian



A bottleneck: Curse-of-dimensionality

0 Fast convergence: If u(y)is sufficiently smooth w.r.t. ¥

° Number of unknown coefficients:

I
P = (p+d): > Exponential in d
pld!
d = 40 p=2 p=23 p=4
P 861 12,341 135,751

Curse-of-dimensionality: Exponential growth of computational complexity

* Intrusive (Galerkin projection) approaches

* Non-intrusive (sampling) approaches



Random sampling: Monte Carlo

Sample Y randomly

Random sampling
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Pseudo-spectral on sparse grids — Stochastic collocation
[Xiu & Hesthaven 05, Babuska et al. 07, Ganapathysubramanian & Zabaras 07, ...]

Sample y on sparse grids

Tensor grid Sparse grid
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° Curse of dimensionality remains

C; = Z w(Y,,) Vi (Yy,) W N ~2PP, d>1 ' exact interpolation
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Question:What if many of the PC coefficients are negligible?




Sparsity of solution w.r.t. PC basis

u(y) is sparse if it has a PC expansion with small number of important coefficients:

P

uy(y) = Z cii(y)

1=1

S=H#{i:c; >0} P

Chaos coefficients |Cz|

10 L 1 I S R R 1 I TR R

10' 10° 10
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The surprise:

A sparse solution can be approximated using N ~ oS < P samples!



Example — Heat transfer in a complex geometry

Hot streak Random heat flux
A
Ys
Reynolds-averaged Navier-Stokes: Sources of uncertainty:
- U, * Heat flux on the cylinder wall (14 r.v’s)
8azi
oT . o
oU; ) oU; 1 OP —|p, ~U iid. c.ov= %1443
Uim—=—|Wwl)+wn) -—| — —5— on
ox;  Ox; | Ox; p Ox;

* Location of the hot streak at inflow (| r.v.

G OT 9 [(UT) | )\ o
drj  Ox; |\ Pr P, ) Ox; ys ~ U c.ov =%57.74
Random B.Cs d=15

Re = 500, 000



Legendre PC expansion of temperature is sparse

Chaos coefficients of temperature at the outflow midpoint
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A compressive sampling/sensing approach

Comepressive sampling/sensing

* Geophysics

* Signal processing
* Imaging

* Statistics

Our effort parallels works of:

* Claerbout
* Logan

* Donoho

* Candes

* Romberg
*Tao

* DeVore



Problem setup — What are we after?

Given N < P random samples (non-adapted):

Y1 u(yy)
Complex

Y- u(ys)

-~ UL PDE System -

Yn u(yy)

reconstruct the S-sparse Legendre polynomial chaos expansion
P

up(y) =Y cbi(y)  lelo=S <P uly) € Ly(-1,1]%)
1=1

Investigate approximation property:

*As N < P ’ stability/convergence?



Discrete representation: A matrix formulation

An underdetermined linear system:

[ V1(y1)  ¥2(y1) Yp(y)] [C1] [ u(yy)] e(y1)]
C u(Yso
vl s o= N«
| V1(yn) Y2(yn) e Yp(yYn) ] : _U(Z./N)_ _G@N)_
P [
LCP,
truncation error
\\ X C = U 4+ €
* llefl2 <6

* J has to be estimated (e.g. statistically)

Some observations:

* This is an ill-posed problem
* It has infinitely many solutions

* Requires further constrains on solution ¢

But we know that C is sparse!



o -minimization — Sparsest approximation

Main idea: Among all possible solutions find the one

with minimum number of non-zeros:
(Pos) : mén lc|lo subject to [|[¥e—ulls <6

where lello = #{i: ¢; # 0}

* The solution is not always unique (for § = 0)!

* It is an NP-hard problem!

A heuristic:

* Convex relaxation via ¢;-minimization: Basis Pursuit Denoising (BPDN)



¢1-minimization/Basis Pursuit Denoising (BPDN)

Main idea: Use the convex relaxation

(Prs) : mcin |c||i  subject to ||[¥e—wulls <6
where [lel|r = 3252 fes

* For sufficiently sparse coefficients and with some conditions on W:
* (P15) and (Fo,5) share the same solution (for § = 0)
* The solution is unique (for § = 0)

* Quadratic programming solvers:

* Techniques such as: active set, projected gradient, interior-point continuation, etc.
* In this work: SPGL1 with complexity O(P1n P)



Why ¢ -norm promotes sparsity?

A geometric interpretation

minimum £5 -norm solution minimum £1 -norm solution

: co A Sparse solution
non-sparse solution




Example — Elliptic stochastic differential equation

=V (alz,y)Vu(z,y)) = f()  zclo

ula:zO = u|m=1 =0

Uncertain diffusion:

Number of random variables: d = 40

d
a(z,y) = a(x) +oa YV Aehr(@)yn ye da.d. U[—1,1]
k=1
(1}1 — 332)2] ‘

2

l.=1/14 a(z)=0.1 o, =0.021

Caa(x17$2) = exp |:_

Solution is sparse in Legendre chaos if:

 Covariance is piecewise analytic [Bieri & Schwab 09]
* Smooth eigenfunctions
* Fast decaying eigenvalues

* e.g. Gaussian kernel



Approximation of chaos coefficients
At © = 0.5
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Convergence of solution statistics

At £ = 0.5

10
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Example — Heat transfer in a complex geometry

Hot streak Random heat flux
A
Ys
Reynolds-averaged Navier-Stokes: Sources of uncertainty:
- U, * Heat flux on the cylinder wall (14 r.v’s)
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ox;  Ox; | Ox; p Ox;

* Location of the hot streak at inflow (| r.v.

G OT 9 [(UT) | )\ o
drj  Ox; |\ Pr P, ) Ox; ys ~ U c.ov =%57.74
Random B.Cs d=15

Re = 500, 000



Chaos coefficients of temperature at the outflow midpoint

Chaos coefficients ]ci |
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Convergence of the outflow temperature variance

2 e Ne — Reference solution
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Ingredients of a successful compressive sampling

OWhen columns of W are “nearly” orthogonal = small mutual coherence:

W
Y) =
M) = 0 1 o Tn s
()] ey ]
V= RN B B
i i¢j(yN)i i’/)k(’yN)i ]
7 .

QWhen coefficient vector is “sufficiently” sparse:

leflo < (T41/p(®)) /4

This is a pessimistic bound!



Bound on mutual coherence - Legendre PC basis

Theorem:

As a result of the concentration of measure phenomenon on empirical

correlation of PC basis:

Prob [,u(\Il) > ] < 4P
— T
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¢1-minimization is stable for Legendre PC expansion

Theorem (General stability of BPDN):

Let u(y) be any essentially bounded function of i.i.d. random variables y = (y1, - , y4)

uniformly distributed on I":= [-1,1]%. Assume there exists:

lllo = S

up(y) = Z;.P:l 1);(y) such that:

gHLOO(F) S €

|uw—u
Then using Spars-grid

N > ¢y P*»4(In P)S N ~ 2PP
random realization of solution:

)
< o€ + c3——=

VN

Hu_uzlv’éum(r)

with overwhelming probability.



Hydrogen Oxidation in Supercritical Water

Effect of parametric uncertainties on species concentration

* System of stiff nonlinear ODEs
* Uncertain reaction rates: 8 independent lognormals

* Uncertain enthalpies of formation: 5 independent Gaussians

* Prior work: [Phenix et al. 98, Reagan et al. 02/04, Le Maitre et al. 04/07, Najm et al. 09, Alexanderian et al. | |]

Hermite expansion of OH concentration (¢t = 6.5 sec)
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Statistics of OH concentration
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Outlook

Design of sampling strategy:

* Question: How to optimally choose {yz}fvzl for a given N'?

* A possibility: Bayesian formulation of compressive sampling ?

* Gaussian truncation error

* Laplace prior

* MAP equivalent to £1-minimization

* New samples to minimize posterior uncertainty

Non-smooth solutions:

* Sharp gradients/discontinuities

* Sparse approximation in multi-wavelet basis
* Adaptive sampling strategies

Multi-physics/Multi-scale applications:

e Lithium batteries as a test bed
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